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This are notes on my theorems on the topic. The full paper was disseminated to a large group of mathe-

maticians in 2003 .

Remark 1: In my paper the following or similar statement often appears: “Let f(n) be a function which

is rational for all integers n.” By this I do not mean that the function f is a quotient of polynomials in

n. What I mean if that f takes on rational values for all integers n. Thus we could have f(n) = 3n−7

n!

or f(n) = nn or f(n) = 3n2−1
n4+2 . I realize that the term “rational function” generally means a quotient of

polynomials. However I do not use the term in that sense anywhere in the paper. When I refer to functions

which are quotients of polynomials I state that the function is a “quotient of polynomials”.

Consider the function f(n) = p(n)
q(n) , where p and q are polynomials of n with rational coefficients. Then

break f(n) into partial functions. Partial fractions must be made by factorizing the denominator q(n)

into polynomials with rational coefficients such that the partial fractions cannot be further broken into

partial fractions. In each partial fraction the degree of the numerator should be less than the degree of the

denominator; further, the numerator should have only one term. Suppose , breaking into partial fractions

we get f(n) = 1
(2n−1) −

1
(2n) . Then we can split one or more of these original partial fractions to get, say,

f(n) = 1
(2n−1) −

1
(n) +

1
(2n) . For theorem 2 it is important to note that partial fractions can be split up to get

a new set of fractions, as shown in the above example. In theorem 2 it may happen that the original break

up into partial fractions does not satisfy the equality mentioned in the theorem, but by using this method of

“part splitting” we may get a different set of fractions that do satisfy the equality. “Part-splitting” results

simply from writing a rational number as the sum of two or more rational numbers.

The term “translation” has the usual meaning. Let f(n) = f1(n)+ · · ·+ fj(n). Then the term “translation”

means replacing fi(n), for some i(1 ≤ i ≤ j), with fi(n+ ci), where ci is an integer.

Let f(n) = f1(n)+ · · ·+fj(n). Then define the term “increase relative occurrence of part” to mean replacing

fi(n), for some i(1 ≤ i ≤ j), with (fi(kn)+fi(kn−1)+· · ·+fi(kn−(k−1)), where k is a positive integer. To do

the reverse replacement is to “decrease relative occurrence of part.” Suppose we increase and/or decrease the

relative occurrence of part p times. For each qth time 1 ≤ q ≤ p we increase relative occurrence of some part

fi(n) we will need to counter this replacement by the function Dq(n) = [−fi(n+1)−fi(n+2)−· · ·−fi(kn)].

Note that Dq(n) =
∑n

r=1[fi(r)− (fi(kr) + fi(kr − 1) + · · ·+ fi(kr − (k − 1))]. For each qth time 1 ≤ j ≤ p
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we decrease relative occurrence of part we will need Dq(n) = [fi(n+ 1) + fi(n+ 2) + · · ·+ fi(kn)]. q simply

keeps count of how many times we have used increasing or decreasing relative occurrence of part; because q

is just an independent counter it appears only on the left side in the above equation and not on the right.

Define D(n) = D1(n) + D2(n) + · · · + Dp(n), where each Dq is gotten by one of the above two formulas.

Examples: f(n) = 1
n + 1

n2 . Increase relative occurrence of part to get f(n) = 1
3n + 1

3n−1 +
1

3n−2 +
1
n2 and to

get D1(n) = − 1
n+1 − 1

n+2 − · · · − 1
3n . Going from the second f(n) to the first would be to decrease relative

occurrence of part.

In theorem 2, if on breaking f(n) into partial fractions we get partial fractions of the same degree but having

different coefficients associated with the powers of n, then this increased and decreased relative occurrence

of part may make it possible to rearrange the partial fractions so that they satisfy the equality mentioned

in theorem 2.

Theorem 2: Let f(n) be a function which is either always positive or always negative for all integers

n > N , where N is a positive integer. Further let f(n) = p(n)
q(n) , where p and q are polynomials of n

with rational coefficients and let
∑∞

n=1 f(n) be convergent series. Break f(n) into partial fractions, to

get f(n) = u1(n) + · · · + uq(n). Rearrange these partial fractions by increasing or decreasing the relative

occurrence of parts and by part-splitting and by translation to get a new set of fractions f1(n), . . . , fj(n).

Then if f1(n) + · · · + fj(n) = 0 then the infinite series is rational or irrational depending on whether

limn→∞ D(n) is rational or irrational.

If we cannot obtain f1(n), . . . , fj(n) such that f1(n) + · · ·+ fj(n) = 0 then the infinite series is irrational.

Note that we can rearrange by using the above three methods in any order and as many times as needed.

Examples for Theorem 2:

We wish to establish whether the convergent series
∑∞

n=1 f(n) is rational or irrational for the below values

of f(n).

It can be seen that, if by using the three methods in any order and as many times as needed we can get

f1(n), . . . , fj(n) such that f1(n)+ · · ·+fj(n) = 0, then we can also obtain the same equality by the following

procedure: first use only part-splitting, and then use only translation. The new set of fractions obtained

should be such that we can just use increasing relative occurrence of parts to achieve the equality (and

given a set of fractions it can be quickly seen if it is possible to rearrange them by only increasing relative

occurrence of part so as to obtain the required equality).

So we can just use the above procedure and thus have an easy method of checking.
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Also note that to obtain f1(n), . . . , fj(n) translation alone will generally do for series connected with impor-

tant functions, and it is rare that part-splitting and increasing or decreasing relative occurrence of part will

even come into play.

f(n) = 1
(1+6n)(5+6n) . Taking partial fractions we get f(n) = u1(n) + u2(n), where u1(n) = 1

4(1+6n) and

u2(n) =
−1

4(5+6n) . There exist no integers i1, i2 such that u1(n + i1) + u2(n + i2) = 0. Using part-splitting

and then translation will not enable us to get a set of fractions which will satisfy the required equality by

increasing relative occurrence of parts; this is because in both denominators n has the same coefficient of 6.

So series irrational.

f(n) = 1
(1+6n)(7+6n) . Taking partial fractions we get f(n) = u1(n) + u2(n), where u1(n) = 1

6(1+6n) and

u2(n) =
−1

6(7+6n) . u1(n+ 1) + u2(n+ 0) = 0. So series rational.

f(n) = 1
(2n+3)(2n+1)(2n−1) . Taking partial fractions we get f(n) = u1(n) + u2(n) + u3(n), where u1(n) =

1
8(2n+3) , u2(n) =

−1
4(2n+1) and u3(n) =

1
8(2n−1) . u1(n+ 0) + u2(n+ 1) + u3(n+ 2) = 0. So series rational.

f(n) = 1
(2n+1)(2n)(2n−1) . Taking partial fractions we get f(n) = u1(n) + u2(n) + u3(n), where u1(n) =

1
2(2n+1) , u2(n) =

−1
(2n) and u3(n) =

1
2(2n−1) . There exist no integers i1, i2, i3 such that u1(n + i1) + u2(n +

i2)+u3(n+i3) = 0. We could try part-splitting using −1
(2n) =

−1
(n)+

−1
(2n) . And then increase relative occurrence

of −1
(n) by replacing it with −1

(2n) +
−1

(2n−1) . We could try this with the other partial fractions too. However, it

can be seen that using part-splitting and then translation will not enable us to get a set of fractions which

will satisfy the required equality by increasing relative occurrence of parts. So series irrational.

f(n) = 1
nk , k is an integer and k > 1. Can’t be broken into partial fractions. Using part-splitting and then

translation will not enable us to get a set of fractions which will satisfy the required equality by increasing

relative occurrence of parts. So series irrational.

f(n) = (−1)n

n . The theorem applies only to series with all terms positive or negative and does not apply to

alternating series. Noting that the series starts at n = 1 and pairing every two terms of the alternating series

we get a new series equal to the alternating series. New series is g(n) = −1
2n−1 + 1

2n . We get g(n) = u1(n) +

u2(n), where u1(n) =
−1

2n−1 and u2(n) =
1
2n . There exist no integers i1, i2 such that u1(n+i1)+u2(n+i2) = 0.

However, by part-splitting we get a new set of fractions: u1(n) =
1
n , u2(n) =

−1
2n and u3(n) =

−1
2n−1 . Increasing

the relative occurrence of 1
n we replace it by 1

2n + 1
2n−1 . We get u1(n) =

−1
2n−1 , u2(n) =

−1
2n , u3(n) =

1
2n and

u4(n) =
1

2n−1 .u1(n+ 0) + u2(n+ 0) + u3(n+ 0) + u4(n+ 0) = 0. We have D(n) = [− 1
n+1 − 1

n+2 − · · · − 1
2n ].

limn→∞ D(n) is known to be irrational. So series irrational.
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f(n) = 3
4n2 − 1

(2n+3)2 . We get f(n) = u1(n) + u2(n), where u1(n) = 3
4n2 and u2(n) = −1

(2n+3)2 . There

exist no integers i1, i2 such that u1(n + i1) + u2(n + i2) = 0. However, by part-splitting we get a new

set of fractions: u1(n) = 1
n2 , u2(n) = −1

(2n)2 and u3(n) = −1
(2n+3)2 . Increasing the relative occurrence of

1
n2 we replace it by 1

(2n)2 + 1
(2n−1)2 . We get u1(n) = 1

(2n)2 , u2(n) = 1
(2n−1)2 , u3(n) = −1

(2n)2 and u4(n) =

1
(2n+3)2 .u1(n+0)+ u2(n+0)+ u3(n+0)+ u4(n− 2) = 0. We have D(n) = [− 1

(n+1)2 − 1
(n+2)2 − · · · − 1

(2n)2 ].

limn→∞ D(n) can be seen to converge to the rational number 0. So series rational.

Theorem 3: Let f(n) be a function which is rational for all positive integers n and which is either always

positive or always negative for all integers n > N , where N is a positive integer. Then the series
∑∞

n=1 f(n)

converges to a rational number if and only if there exists a function F (n), such that

(1)F (n) is rational for all positive integers n.

(2)f(n) = F (n)− F (n+ 1) and

(3) limn→∞ F (n) = 0

(4) F (n) must be expressible in a form other than an infinite series.

(5) limn→∞ F (n) must be expressible in a form other than an infinite series.

“Expressible in a form other than an infinite series” means that when we write the expression for F (n) or

for limn→∞ F (n), the expression must not contain an infinite series.

Remark 4: What does theorem 3 tell us? It states that in all series with rational terms that converge to a

rational number, f(n) can be broken into parts which cancel each other out. The added conditions (4) and

(5) serve to eliminate choices where F (n) is a circular or “fake” where f(n) is not being “actually” broken

into two parts, even though we have f(n) = F (n) − F (n + 1). Without these conditions theorem 3 would

be unusable and would just be a circular statement. With these conditions theorem 3 becomes a powerful

statement which can be used to examine the question of convergence to rational or irrational numbers infinite

series. For example, it can be proved that theorem 2 follows from theorem 3. Instead of conditions (4) and

(5) we could say that F (n) must be a “closed expression” or a “closed form”; instead of (4) and (5) we could

also say that the infinite series
∑∞

n=1 f(n) is a “telescoping series”.

Remark 5: We can also use the ideas of these methods to analyze infinite series, and learn facts about them

other than what kind of real number they converge to. Let us look at the famous binomial series which is

associated with Newton and Abel. The following is from a 1826 paper by Neils H. Abel:
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“One of the most remarkable series of algebraic analyses is the following: (1+x)m = 1+ m
1 x+

m(m−1)
1·2 x2+ · · ·

etc.

· · · It is assumed that the numerical equality will always occur whenever the series is convergent, but this

has never yet been proved.”

Abel finally proved this. Now an alternate way to prove this would be that if we knew the infinite series

converges to a rational number then there must exist a cancellation pattern. A search for a cancellation

pattern, say for the case m = 1
2 leads to replacing x by y2 − 1. Also further replace y2 − 1 = (y − 1)(y + 1)

by z(z − 2), putting z = 1 − y. In each term replacing x with z2 − 2z, expanding each term, and adding

the same powers of z from all terms, gives us the required cancellation pattern. When m = 1
3 we would

begin by replacing x with y3 − 1 etc. Thus this numerical equality is proved by finding and using this

cancellation pattern, without actually using any of the theorems in this paper. This example is unusual

because here we have a cancellation pattern for both cases — when the series converges to a rational or to

an irrational number; this kind of occurrence is what we can often expect when the terms involve xn and

the series converges to a rational number for some values of x. But what led us to this easy solution was

that we knew that because for various values of x the series converges to a rational number there must be a

hidden cancellation pattern.
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